martes, 24 de mayo de 2016

PRUEBAS DE RESISTENCIA DEL CONCRETO

Resistencia a la compresión del concreto

La manera actual para evaluar la calidad del concreto, en términos de esfuerzo, es la prueba para la determinación de la resistencia a la compresión en especímenes cilíndricos, corazones o cubos de concreto (NMX-C-083-ONNCCE-2014).
La prueba consiste, básicamente, en “comprimir” el espécimen hasta llevarlo a la máxima carga que puede soportar y que se produzca la falla o fractura. De esta manera, conociendo la carga máxima soportada y dividiendo éste dato entre el área del espécimen obtendremos la resistencia del concreto, después se debe hacer una corrección dependiendo del tipo y dimensiones del espécimen para conocer la resistencia real.
Algunas consideraciones:
- El área de contacto de la aplicación de la carga en el espécimen debe ser plana para que la carga se distribuya uniformemente.
- Si se utiliza mortero de azufre para corregir la planicidad, se debe corroborar que la resistencia de dicho azufre cumpla con lo establecido por la norma, así como el espesor de la capa del cabeceo.
- La velocidad de la aplicación de la carga debe apegarse a lo establecido en la norma, ya que una velocidad lenta dará como resultado una resistencia menor y una velocidad rápida una resistencia mayor, obteniendo resultados irreales.
- La veracidad de los resultados es de suma importancia, por lo que la prensa de ensaye debe estar calibrada, verificada y en buenas condiciones de uso.
El personal encargado de este proceso debe estar consciente de la importancia de la prueba. No se trata de aplastar cilindros o cubos nada más. Estamos evaluando un producto que se usará para construir edificaciones donde van a vivir, trabajar o transitar personas, una prueba mal ejecutada o inventar resultados puede acarrear dramáticas consecuencias.
El articulo que observo fue suministrado por la siguiente pagina, para mayor información contacte la misma:

  • Pagina: American Concrete Pumping Association

Isaac Newton

ISAAC NEWTON
               
El físico y matemático británico Isaac Newton es la figura culminante de la revolución científica de los siglos XVI y XVII. Las investigaciones de Newton cubrieron un amplio abanico de fenómenos: realizó estudios de óptica, mecánica, matemáticas e incluso alquimia. En el terreno de la óptica, sus experimentos con el prisma le permitieron demostrar que la luz blanca se compone de radiaciones de colores cuya refractabilidad es distinta; sus teorías sobre la naturaleza de la luz, que no estuvieron exentas de controversia y ocasionaron disputas con el conocido científico Robert Hooke, permitieron fundamentar la óptica moderna. Igualmente importante fue la aportación de Newton a las matemáticas. A partir de las técnicas cartesianas para el trazado de tangentes, desarrolló un algoritmo de cálculo diferencial aplicable a las curvas algebraicas. Pero sus mayores logros tuvieron lugar en el campo de la física, en el que logró una síntesis de la física terrestre y la mecánica celeste que mantendría su vigencia hasta principios del siglo XX.
              

               Isaac Newton nació en las primeras horas del 25 de diciembre de 1642 (4 de enero de 1643, según el calendario gregoriano), en la pequeña aldea de Woolsthorpe, en el condado de Lincolnshire. Su padre, un pequeño terrateniente, acababa de fallecer a comienzos de octubre, tras haber contraído matrimonio en abril del mismo año con Hannah Ayscough, procedente de una familia en otro tiempo acomodada. En junio de 1661, Newton fue admitido en el Trinity College de Cambridge, y se matriculó como fámulo, ganando su manutención a cambio de servicios domésticos, pese a que su situación económica no parece que lo exigiera así. Allí empezó a recibir una educación convencional en los principios de la filosofía aristotélica (por aquel entonces, los centros que destacaban en materia de estudios científicos se hallaban en Oxford y Londres), pero en 1663 se despertó su interés por las cuestiones relativas a la investigación experimental de la naturaleza, que estudió por su cuenta.
Fruto de esos esfuerzos independientes fueron sus primeras notas acerca de lo que luego sería su cálculo de fluxiones, estimuladas quizá por algunas de las clases del matemático y teólogo Isaac Barrow; sin embargo, Newton hubo de ser examinado por Barrow en 1664 al aspirar a una beca, y no consiguió entonces inspirarle ninguna opinión especialmente favorable.      Al declararse en Londres la gran epidemia de peste de 1665, Cambridge cerró sus puertas y Newton regresó a Woolsthorpe. En marzo de 1666 se reincorporó al Trinity, que de nuevo interrumpió sus actividades en junio al reaparecer la peste, y no reemprendió definitivamente sus estudios hasta abril de 1667. En una carta publicada póstumamente, el propio Newton describió los años de 1665 y 1666 como su época más fecunda de invención, durante la cual pensaba en las matemáticas y en la filosofía mucho más que en ningún otro tiempo desde entonces.
 

              A su regreso definitivo a Cambridge, Newton fue elegido miembro becario del Trinity College en octubre de 1667, y dos años más tarde sucedió a Barrow en su cátedra. Durante sus primeros años de docencia no parece que las actividades lectivas supusieran ninguna carga para él, ya que tanto la complejidad del tema como el sistema docente tutorial favorecían el absentismo a las clases. En 1664 o 1665 había hallado la famosa fórmula para el desarrollo de la potencia de un binomio con un exponente cualquiera, entero o fraccionario, aunque no dio noticia escrita del descubrimiento hasta 1676, en dos cartas dirigidas a Henry Oldenburg, secretario de la Royal Society; el teorema lo publicó por vez primera en 1685 John Wallis, el más importante de los matemáticos ingleses inmediatamente anteriores a Newton, reconociendo debidamente la prioridad de este último en el hallazgo.


               El primero en oponerse a sus ideas en materia de óptica fue Robert Hooke, a quien la Royal Society encargó que informara acerca de la teoría presentada por Newton. Hooke defendía una concepción ondulatoria de la luz, frente a las ideas de Newton, precisadas en una nueva comunicación de 1675 que hacían de la luz un fenómeno resultante de la emisión de corpúsculos luminosos por parte de determinados cuerpos. La acritud de la polémica determinó que Newton renunciara a publicar un tratado que contuviera los resultados de sus investigaciones hasta después de la muerte de Hooke y, en efecto, su Óptica no se publicó hasta 1704. La obra máxima de Newton, Principios matemáticos de la filosofía natural, vería la luz mucho antes.


               Newton atravesó por una crisis paranoica de la que se ha tratado de dar diversas explicaciones, entre las que no ha faltado, desde luego, la consistente en atribuirla a la ruptura de su relación con el joven Fatio, relación que, por otra parte, no parece que llevara a Newton a traspasar las férreas barreras de su código moral puritano. Los contemporáneos de Newton popularizaron la improbable explicación de su trastorno como consecuencia de que algunos de sus manuscritos resultaran destruidos en un incendio; más recientemente se ha hablado de una lenta y progresiva intoxicación derivada de sus experimentos alquímicos con mercurio y plomo. Por fin, no pueden olvidarse como causa plausible de la depresión las dificultades que Newton encontró para conseguir un reconocimiento público más allá del estricto ámbito de la ciencia, reconocimiento que su soberbia exigía y cuya ausencia no podía interpretar sino como resultado de una conspiración de la historia.


               A fines de 1701, Newton fue elegido de nuevo miembro del parlamento como representante de su universidad, pero poco después renunció definitivamente a su cátedra y a su condición de fellow del Trinity College, confirmando así un alejamiento de la actividad científica que se remontaba, de hecho, a su llegada a Londres. En 1703, tras la muerte de Hooke y cuando el final de la reacuñación había convertido la dirección de la Casa de la Moneda en una tranquila sinecura, Newton fue elegido presidente de la Royal Society, cargo que conservó hasta su muerte. En 1705 se le otorgó el título de sir.
Pese a su hipocondría, alimentada desde la infancia por su condición de niño prematuro, Newton gozó de buena salud hasta los últimos años de su vida; a principios de 1722 una afección renal lo tuvo seriamente enfermo durante varios meses, y en 1724 se produjo un nuevo cólico nefrítico. En los primeros días de marzo de 1727, el alojamiento de otro cálculo en la vejiga marcó el comienzo de su agonía: Newton murió en la madrugada del 20 de marzo, tras haberse negado a recibir los auxilios finales de la Iglesia, consecuente con su aborrecimiento del dogma de la Trinidad.

viernes, 20 de mayo de 2016

Henry  Bessemer
 

Bessemer, Sir Henry (1813-1898)  Inventor británico, nacido en Charlton, Hertfordshire, y autodidacta, en gran medida. Fue un inventor prolífico, pero se le conoce sobre todo por sus innovaciones en la siderurgia que elevaron enormemente la producción anual de acero en Inglaterra, consiguiendo un acero de gran calidad, disponible a un costo muy reducido.
El convertidor de Bessemer permitió la obtención de acero barato y, con él, la construcción de obras de ingeniería asombrosas para la época.
A los 20 años, Bessemer diseñó un procedimiento que evitaba las falsificaciones de los sellos impresos en los documentos oficiales que fue adoptado por la Casa del Timbre.
Patentó más de 117 inventos: entre ellos, un dispositivo para la obtención de caracteres tipográficos, un nuevo tipo de proyectil, frenos para ferrocarriles, máquinas para la industria del vidrio.
Diseñó una máquina para la fabricación de polvo de bronce destinado al revestimiento de superficies con efectos de oro, que invadió el mercado y fue empleado en toda Inglaterra para la decoración.
Anunció los detalles del método. Los industriales siderúrgicos invirtieron fortunas en altos hornos para manufacturar acero por el nuevo sistema, pero el producto resultó de ínfima calidad y Bessemer perdió prestigio y credibilidad.
Volvió a los experimentos para perfeccionar su método. Como ya no creían en él, instaló sus propias acerías en Sheffield, Inglaterra. Importó mineral sin fósforo de Suecia y vendió acero de alta calidad a un costo muy inferior al de sus competidores.
Durante más de dos mil años, el hombre había utilizado el hierro como el metal común más duro y resistente que conocía. Se obtenía calentando mineral de hierro con coque y caliza. El producto resultante contenía gran cantidad de carbono (del coque) y recibía el nombre de «hierro fundido» o «fundición». Era barato y duro, pero también quebradizo; bastaba un golpe fuerte para partirlo.
El carbono era posible eliminarlo del hierro fundido a base de mezclarlo con más mineral de hierro. El oxígeno del mineral se combinaba con el carbono del hierro fundido y formaba monóxido de carbono gaseoso, que se desprendía en burbujas y ardía. Atrás quedaba el hierro casi puro, procedente del mineral y del hierro fundido: es lo que se llamaba «hierro forjado» o «hierro pudelado». Esta forma del hierro era resistente y aguantaba golpes fuertes sin partirse. Pero era bastante blando y además caro.
El acero podía hacerse más fuerte que el arrabio y más duro que el hierro forjado, combinando así las virtudes de ambos. Antes de Bessemer, había que convertir primero el arrabio en hierro forjado y añadir después los ingredientes precisos para conseguir el acero. Si el hierro forjado era ya caro, el acero lo era el doble. Metal bastante escaso, se utilizaba principalmente para fabricar espadas.
La tarea que se propuso Bessemer fue la de eliminar el carbono del arrabio a precios moderados. Pensó que el modo más barato y fácil de añadir oxígeno al hierro fundido para quemar el carbono era utilizar un chorro de aire en lugar de añadir mineral de hierro.
Bessemer empezó a experimentar y no tardó en demostrar que el chorro de aire cumplía su propósito. El aire quemaba el carbono y la mayor parte de las demás impurezas, y el calor de la combustión aumentaba la temperatura del hierro. Controlando el chorro de aire, Bessemer consiguió fabricar acero a un coste bastante inferior al de los anteriores métodos.
En 1856 anunció los detalles del método. Los industriales siderúrgicos estaban entusiasmados e invirtieron fortunas en «hornos altos» para manufacturar acero por el nuevo sistema. Imaginaos su horror cuando descubrieron que el producto era de ínfima calidad; Bessemer, acusado de haberles tomado el pelo, volvió a los experimentos.
Resultó que en este método no se podía utilizar mineral que contuviera fósforo; el fósforo quedaba en el producto final y hacía que el hierro fuese quebradizo. Y había dado la casualidad de que Bessemer utilizara mineral de hierro libre de fósforo en sus experimentos.
Anunció este hallazgo, pero los industriales no prestaban ya oídos: estaban hasta la coronilla de los hornos de Bessemer. Así que éste pidió dinero prestado e instaló sus propias acerías en Sheffield, Inglaterra, en 1860. Importó mineral sin fósforo de Suecia y comenzó a vender acero de alta calidad a 100 dólares menos la tonelada que ninguno de sus competidores. Aquello acabó con toda reticencia.
Hacia 1870 se hallaron métodos de resolver el problema del fósforo, lo cual permitió aprovechar los vastísimos recursos norteamericanos de mineral de hierro. Bessemer fue ennoblecido en 1879 y murió en Londres, rico y famoso, en 1898.
El acero barato permitió construir obras de ingeniería que hasta entonces no se habían podido ni soñar. Las vigas de acero se podían utilizar ahora como esqueletos para sostener cualquier cosa imaginable. Los ferrocarriles comenzaron a recorrer continentes enteros sobre carriles de acero y grandes navíos de acero empezaron a surcar los océanos. Los puentes colgantes salvaban ríos, los rascacielos iniciaron su escalada a las alturas, los tractores eran ahora más fuertes, y no tardaron en aparecer los automóviles con bastidores de acero. Y en el mundo de la guerra empezaron a tronar cañones más potentes que ponían a prueba nuevos blindajes, más resistentes.
http://historiaybiografias.com/bessemer/

  

Convertidor de Bessemer.

El principal invento fue el convertidor de Bessemer, que permitió que este metal se produjera con una mayor calidad y también que fuera más barato. Su inventor fue Henry Bessemer, un ingeniero inglés del S.XIX. (Nos llama mucho la atención que vivió nada más y nada menos que ¡¡85 AÑOS!!
Este aparato lo que hace es convertir el arrabio (lo que obtenemos al reducir el mineral de hierro, tiene un alto porcentaje de carbono) ya procesado,.
Su funcionamiento consiste en una caldera forrada de acero en cuyo interior se encuentra un revestimiento de un material refractario (tiene una gran resistencia al calor y al fuego). La parte superior está abierta, mientras que la parte de abajo es redonda y se mueve gracias a un eje horizontal. Tiene dos agujeros a través de los cuales introducen el aire.
Se sitúa sobre dos soportes, que hacen que la caldera se pueda mover y girarse, para introducir la función y posteriormente colar el acero.
Para cargar el convertidor, se lo inclina, y luego se vierte el arrabio derretido por la abertura que se halla en la parte superior. A continuación, se suelta el aire, el cual pasa a través de la masa de hierro derretido. Sólo cuando la corriente de aire alcanza su máxima intensidad, se vuelve a poner el convertidor en posición vertical. De otro modo, el metal derretido taparía los agujeros del fondo, evitando que el aire entrara en el horno.
Cuando éste se encuentra en pleno funcionamiento, lanza al aire chispas brillantes, un denso humo de color pardo, y llamas de color rojo oscuro. Después de algunos minutos, las llamas crecen y se tornan más brillantes, lo cual indica que se está quemando el carbono. Al cabo de unos 15 minutos, las llamas desaparecen con rapidez, y todas las impurezas quedan eliminadas.

Luego, se vuelve a inclinar el convertidor y se cierra el paso del aire. Esta acción debe efectuarse en el momento preciso. Si se procede prematuramente, quedan algunas impurezas en el metal, y si, por el contrario, se retarda la operación, se quema el metal, quedando inutilizado. A continuación se añaden los elementos necesarios, tales como carbono y manganeso, y se obtiene así el producto final.











Módulo de elasticidad
Un hilo metálico sometido a un esfuerzo de tracción sufre una deformación que consiste en el aumento de longitud y en una contracción de su sección.
Supondremos que el aumento de longitud es el efecto dominante, sobre todo en hilos largos y de pequeña sección. Estudiaremos el comportamiento elástico de los hilos, aquél en el que existe una relación de proporcionalidad entre la fuerza F aplicada al hilo y el incremento DL de su longitud o bien, entre el esfuerzo F/S y la deformación unitaria DL/L0.



Donde S es la sección del hilo S=pi r2, y Y es una constante de proporcionalidad característica de cada material que se denomina módulo de elasticidad o módulo de Young.
Metal
Módulo de Young, Y·1010 N/m2
Cobre estirado en frío
12.7
Cobre, fundición
8.2
Cobre laminado
10.8
Aluminio
6.3-7.0
Acero al carbono
19.5-20.5
Acero aleado
20.6
Acero, fundición
17.0
Cinc laminado
8.2
Latón estirado en frío
8.9-9.7
Latón naval laminado
9.8
Bronce de aluminio
10.3
Titanio
11.6
Níquel
20.4
Plata
8.27
                                                  Koshkin N. I., Shirkévich M. G.. Manual de Física Elemental. Editorial Mir 1975.


Representando el esfuerzo en función de la deformación unitaria para un metal obtenemos una curva característica semejante a la que se muestra en la figura.
Durante la primera parte de la curva, el esfuerzo es proporcional a la deformación unitaria, estamos en la región elástica. Cuando se disminuye el esfuerzo, el material vuelve a su longitud inicial. La línea recta termina en un punto denominado límite elástico.
Si se sigue aumentando el esfuerzo la deformación unitaria aumenta rápidamente, pero al reducir el esfuerzo, el material no recobra su longitud inicial. La longitud que corresponde a un esfuerzo nulo es ahora mayor que la inicial L0, y se dice que el material ha adquirido una deformación permanente.
El material se deforma hasta un máximo, denominado punto de ruptura. Entre el límite de la deformación elástica y el punto de ruptura tiene lugar la deformación plástica.
Si entre el límite de la región elástica y el punto de ruptura tiene lugar una gran deformación plástica el material se denomina dúctil. Sin embargo, si la ruptura ocurre poco después del límite elástico el material se denomina frágil.
http://www.sc.ehu.es/sbweb/fisica/solido/din_rotacion/alargamiento/alargamiento.htm#Fundamentos físicos


Limite elástico y plástico
El límite elástico, también denominado límite de elasticidad, es la tensión máxima que un material elástico puede soportar sin sufrir deformaciones permanentes. Si se aplican tensiones superiores a este límite, el material experimenta deformaciones permanentes y no recupera su forma original al retirar las cargas. En general, un material sometido a tensiones inferiores a su límite de elasticidad es deformado temporalmente de acuerdo con la ley de Hooke.
Los materiales sometidos a tensiones superiores a su límite de elasticidad tienen un comportamiento plástico.
Si las tensiones ejercidas continúan aumentando el material alcanza su punto de fractura. El límite elástico marca, por tanto, el paso del campo elástico a la zona de fluencia. Más formalmente, esto comporta que en una situación de tensión uní axial, el límite elástico es la tensión admisible a partir de la cual se entra en la superficie de fluencia del material.
Zona elástica: en esta zona las deformaciones se reparten a lo largo de la probeta, son de pequeña magnitud y, si se retirara la carga aplicada, la probeta recupera su forma inicial. El coeficiente de proporcionalidad entre la tensión y la deformación se denomina módulo de elasticidad o de Young y es característico del material.
Fluencia o cedencia. Es la deformación brusca de la probeta sin incremento de la carga aplicada. El fenómeno de fluencia se da cuando las impurezas o los elementos de aleación bloquean las dislocaciones de la red cristalina impidiendo su deslizamiento, mecanismo mediante el cual el material se deforma plásticamente. Alcanzado el límite de fluencia se logra liberar las dislocaciones produciéndose la deformación bruscamente.





Método de Cross

El método de Cross es un método de aproximaciones sucesivas, que no significa que sea aproximado. Quiere decir que el grado de precisión en el cálculo puede ser tan elevado como lo desee el calculista. El método permite seguir paso a paso el proceso de distribución de momentos en la estructura, dando un sentido físico muy claro a las operaciones matemáticas que se realizan.
Una viga empotrada-empotrada, está sometida a un sistema de acciones. En ella se pueden considerar tres tramos. Los tramos primero y último, de acuerdo con el convenio, tienen flexión negativa, mientras que el tramo intermedio presenta flexión positiva. Los momentos flectores MA y MB en los apoyos serán negativos, así como los momentos del tramo intermedio son positivos. Por el principio de acción y reacción, la viga ejerce sobre los apoyos unos momentos y los apoyos sobre las vigas otros, que serán iguales y de sentido contrario. A estos momentos se les llama pares de empotramiento. Por tanto, los pares de empotramiento son las acciones que ejercen los apoyos sobre la pieza. Estos pares de empotramiento tienen el mismo valor absoluto que los momentos flectores MA y MB. Tomando el convenio de signos, el par en el apoyo A es positivo, mientras que el par en B es negativo. Como los momentos flectores en los apoyos son de signo negativo, para pasar de momentos flectores a pares de Bases del método de Cross 3 empotramiento basta cambiar de signo al de la izquierda y mantener el signo al de la derecha. De igual modo se opera para pasar de pares de empotramiento a momentos flectores. En las piezas verticales se actúa de la misma forma. Como no hay establecido un signo de flexión, se define uno. Para pasar de pares de empotramiento a momentos flectores, o a la inversa, se cambia de signo al valor de un extremo